
Debugging Serial Bus Systems with
a Mixed-Signal Oscilloscope
Application Note 1395

Who Should Read This
Application Note?

This application note is for digital
designers in R&D working with
both analog and digital compo-
nents, including microcontroller
and DSP systems using serial
buses. This application note dis-
cusses the challenges associated
with and new solutions for
debugging serial bus designs
including a Controller Area
Network (CAN), Inter Integrated
Circuit (I2C), Serial Peripheral
Interface (SPI), or Universal
Serial Bus (USB).

Introduction to Serial Bus
Protocols

For many years, parallel buses
have been the primary method for
communicating with peripheral
devices in microcontroller and
DSP-based designs. Microcon-
trollers and DSPs are used in
many types of applications from
consumer products, such as a cell
phone, to control of the electrical
system in a car, to many different
types of embedded systems
including industral applications.
In these types of applications,
bus speeds typically operate in
the tens of megahertz and below
range. Because these applications
continue to grow in complexity

Table of Contents

Introduction to Serial Bus Protocols . . 1

Debugging Serial Bus Systems with
a Mixed-Signal Oscilloscope (MSO) . . 2

Inter-Integrated Circuit (I2C)
Introduction . 4

Debugging an I2C Bus System with
the MSO Trigger Features. 5

Serial Peripheral Interface (SPI)
Introduction . 8

Debugging an SPI Bus System with
the MSO Triggering Features 9

Controller Area Network (CAN)
Introduction . 10

Debugging a CAN Bus System with
the MSO Triggering Features 12

Universal Serial Bus (USB)
Introduction . 14

Debugging a USB System with
Agilent MSO Triggering Features 15

Summary . 17

Information on Agilent MegaZoom
and Mixed-Signal Oscilloscopes 18

Support, Services, and Assistance . . . 19

while trying to maintain minimal
costs, serial buses are commonly
used as the method for communi-
cating between devices and
peripherals. In addition to a
lower cost contribution, serial bus
designs use less power, and fewer
pins and therefore require less
board space.

Serial buses allow for the trans-
mission of data over a serial line
with a minimal amount of control
lines and connections. Today,
there are a large number of
devices designed with serial pro-
tocol interfaces by many manu-
facturers. These buses are widely
used for interfacing microcon-
trollers and DSPs to EEPROMs,
analog to digital converters, sen-
sors, actuators, and many other
peripherals. These systems are
often used as control buses and
networks inside TV equipment,
cellular phones, automobiles,
and in many other industrial
applications.

The major advantage of using a
serial bus is the small number of
signals required. A disadvantage
of serial interfacing is the trade-
off of speed for space in the
design. The microcontroller’s I/O
port can spend a significant
amount of time communicating
with a serial device. Another dis-
advantage of using a serial bus in

a mixed analog and digital design
is in debugging problems in the
system. The difficulty lies in
extracting information about the
protocol itself and in determining
the interactions between devices
from a long serial stream of data.

2

There are different types of meas-
urement problems encountered
when debugging mixed analog
and digital serial bus designs.
Designers may need to debug the
behavior of the serial bus proto-
col itself or they may be using an
established serial protocol con-
nection to get an entire design to
communicate and work together
properly. In the former case, the
user would most likely use an
oscilloscope to debug the physical
layer of the protocol. Parametric
measurements such as rise and
fall time, setup and hold times,
and analyzing voltage levels could
be made on signals in the system,
such as the clock and data lines.
For the latter problem, the
designer may want to look at
functional and integration issues
within the system, which may
require analyzing relative timing
and data content on the bus.

Debugging problems like these in
today’s serial bus designs can be
quite a challenge using traditional
methods. A common method for
debugging these systems has been
to use a logic analyzer combined
with an oscilloscope. However,
triggering on a serial bus transi-
tion of interest can be difficult
because there is no time reference
to all of the data since it is read
sequentially bit-by-bit. In the
past, debugging a parallel bus
with a logic analyzer was fairly
straightforward by setting up a
pattern or state trigger to find the
interaction of interest.

Debugging Serial Bus Systems with a Mixed-Signal Oscilloscope

However, setting up a logic ana-
lyzer to trigger on content within
a long serial data stream is
another matter. To trigger the
logic analyzer on a serial pattern
within a protocol requires the
user to create a state machine
that looks for the desired bit
pattern or frame in the protocol.
Unfortunately, most logic analyz-
er’s state machines are usually
only 16 levels deep, which does
not meet the necessary depth to
look for a problem in a long serial
stream of data.

This solution also would require a
lengthy process of measurement
setups, which would probably
result in a significant amount of
user frustration. If the usered
needs to make parametric types
of measurements on the system,
correlating the logic analyzer
with an oscilloscope would be
even more time consuming. It
would also require deep memory
records on both instruments to
view the long serial streams of
data. With demanding schedules
and project deadlines, most
designers would agree that better
techniques and tools are neces-
sary for debugging designs that
include serial bus technologies.

To meet and beat these chal-
lenges, Agilent has introduced a
new method for debugging serial
bus interfaces using a Mixed-
Signal Oscilloscope (MSO) with
specially designed triggering
capabilities for serial protocols.
These features solve the difficult

problem of triggering on the spe-
cific protocol conditions with a
logic analyzer and oscilloscope.
The Agilent MSO automatically
finds the desired pattern in the
long serial stream without the
chore of creating a complicated
state machine in a logic analyzer.
The MSO is a single instrument
with 16 digital timing channels
and 2 analog scope channels with
bandwidths up to 500 MHz. In
addition, the MSO has very deep
memory acquisition records using
Agilent MegaZoom technology.
These triggering
features are easy to set up and
can reduce the time you currently
spend in debugging problems in
embedded systems that utilize
serial bus communications.

The serial bus triggering features
in the MSO can trigger on serial
buses with a synchronous clock,
such as the I2C and SPI buses
that have separate clock and data
lines. In addition, the Agilent
MSO is also able to establish a
trigger on serial buses that have
an embedded clock within the
data stream, such as CAN and
USB. These powerful new trigger-
ing features make it easy to corre-
late the sequential data and
timing on long streams of data.

With up to 8 Mbytes of MegaZoom
deep memory, the Agilent MSO
can easily and quickly capture
and analyze long serial streams.
With one instrument, MegaZoom
deep memory gives you the ability
to look at the fast digital signals

3

Debugging Serial Bus Systems with a Mixed-Signal Oscilloscope (continued)

RF M-Bus
RS232
RS485

Microcontroller

1 2 3

4 5 6

7 8 9

0 #
0p Amp

Voltage
Supervisor

Voltage
Regulator

EEPROM

LCD Displaycontrol and surveillance
of all controllable systems
used in the household,
e.g.

Possible applications:

- heating system
- alarm system
- smoke detectors
- metering systems
 (electricity and water
 flow meters etc.)

Keypad

Figure 1. Example of a microcontroller-based design used to monitor and control devices in the home. The microcontroller
uses the SPI bus to communicate with an RF tranceiver, an RS232 bridge, an EEPRPOM, a keypad, and display

and correlate those with slow
analog signals on long serial data
streams. Also, the MSO’s sixteen
digital and two analog channels
of acquisition are automatically
time correlated. The dilemma of
having to trigger twice to get a
long time capture or to see
detailed resolution is solved with
MegaZoom deep memory.

Figure 1 shows an example of a
microcontroller-based design that
is used to control and monitor
devices around the home. The
microcontroller communicates
with an RF transceiver, an RS232
bridge, an EEPROM, a keypad,
and a display over the SPI bus.
The MSO is the perfect debug tool
for this design. With the combina-
tion of analog and digital chan-
nels, the user can correlate activi-
ty on the serial bus with what is

taking place in other parts of the
system. This makes it easier to
debug the source of a serial bus
problem, such as a missing
acknowledge, handshake, or an
unintended packet loss.
Additionally, the triggering fea-
tures give the ability to look at
the problems in real time instead
of capturing the data and then
using post processing to view the
data record. This way the user
can be sure that the signals being
viewed are accurate representa-
tions of the current timing rela-
tionships in the system.

Many designs incorporate more
than one type of serial interface
for communication. For example,
a design may use an I2C bus to
communicate locally to an EEP-
ROM and then another device
may use a SPI bus to communi-

cate with other peripherals in the
design. The entire design may
then connect to an external net-
work via USB or CAN. Having one
instrument to debug many parts
of a system can reduce debug
time, cost, and frustration.

Using an Agilent MSO with
MegaZoom deep memory and
protocol-specific triggering solves
the new challenge of finding and
viewing problems within a long
stream of serial data in today’s
embedded designs with serial
buses. This application note
describes the Agilent MSO serial
protocol triggering features
including I2C, SPI, CAN and USB,
and how these features make
debugging microcontroller and
DSP-based designs easier and
more efficient than ever before.

4

Inter-Integrated Circuit (I2C) Introduction

Philips originally developed the
I2C (Inter-Integrated Circuit) bus
for communication between
devices inside of a TV set. Today,
I2C is used in a broad range of
applications for efficient inter-IC
control and is supported by most
semiconductor vendors. The
I2C bus consists of a simple
bi-directional two-wire bus with
two signal lines, SCL (serial
clock) and SDA (serial data). All
I2C bus compatible devices have
an on-chip interface that allows
them to communicate directly
with each other. Most I2C devices
operate at speeds up to 400 Kbps,
with some going into the low
megahertz range.

The protocol is well defined and
has a built in addressing scheme
so there is no need for chip select

Figure 2. Example of an I2C bus system. The I2C bus consists of two active signals, SDA and SCL.
Every component on the bus has its own unique address.

MICRO
Controller
A

LCD
Driver

Static
RAM or
EEPROM

GATE
ARRAY ADC

MICRO
Controller
B

SDA

SCL

or logic controls. This makes it an
inexpensive and simple solution
to link many devices of an embed-
ded design together. When it was
first introduced, the I2C bus pro-
tocol used 7 bits for addressing.
To accommodate the higher
demand for more address space
the bus now allows for 10-bit
addressing and speeds up to
3.4 MHz yet remains backward
compatible. Because of its low
cost, it is widely used in many
products, including cell phones,
audio/video instruments, medical
equipment, and industrial appli-
cations. In fact, there are hun-
dreds of I2C compatible devices
available today. Examples of
simple I2C compatible devices
found in embedded systems
include EEPROMs, thermal sen-
sors, and real-time clocks.

The I2C bus physically consists of
two active signals and a ground
connection. The signals SDA and
SCL are both bi-directional. Every
component connected to the bus
has its own unique address,
whether it is a CPU, an LCD
driver, or an EEPROM. Each of
these chips can act as a receiver
and/or transmitter depending on
their function. In addition, there
may be one or more bus masters.
The device that initiates data
transfer on the bus is considered
the bus master and all the others
are bus slaves. Masters are gener-
ally microcontrollers, micro-
processors, or DSPs. Figure 2
shows an example of an embed-
ded system with an I2C bus.

5

Debugging an I2C Bus System with the MSO Trigger Features

Using a conventional oscilloscope
to debug and correlate data and
timing in a long serial stream can
be difficult and time consuming.
A typical problem could be a
microcontroller requesting infor-
mation from a device, such as an
LCD controller, and then not
receiving any information back
from the slave device. Debugging
this problem with a conventional
scope would require the user to
digitize a long data record using
either an edge or pattern trigger.
The user would then need to
scroll through the individual data
frames one-by-one to search for
the particular problem. Using
this technique would be very
time consuming.

Using an MSO with I2C triggering
features and deep memory is a
perfect solution for debugging
problems with devices on an I2C
bus. The 2 analog channels along
with 16 digital timing channels
make it possible to probe the two
signals of the bus along with
other signals, such as the data
and address lines of an EEPROM,
to see where the problems are
really occurring in the system.
With these features it is easy to
trigger and set up the address
and data conditions to debug the
common I2C bus conditions,
which could include a problem in
the system behavior or on a spe-
cific
I2C frame.

I2C Trigger Features

Setting up the I2C triggering
features is simple. All of these
features are accessed through the
easy-to-use interface of the MSO.
After assigning the data (SDA)
and clock (SCL) to specific scope
channels, the user can then select
the I2C serial triggering options,
as shown in Figure 3. The two
lines of the bus can be probed by
either the digital timing channels
or the analog scope channels and
are automatically labeled on
the screen.

Figure 3. Setting up I2C triggering on the Mixed-Signal Oscilloscope.
The MSO quick help screen gives detailed instructions on how to use the I2C
triggering features.

6

Debugging an I2C Bus System with the MSO Trigger Features (continued)

Content Triggering: Read or Write
Frame of a Specific Address and
Data Value

In a typical I2C frame, there is a
start condition, a control byte
that configures the particular
slave to be read from or written
to, a valid acknowledge clock
pulse, and then other bytes of the
transferred data. The MSO can be
easily configured to trigger on the
address and/or data of the con-
trol byte or the secondary byte.

This is a powerful triggering
feature that allows the user to
look within the I2C frame to
trigger when a device at a partic-
ular address is written to or read
from with a data value. For
example, in Figure 4 the MSO
triggers when a microcontroller
writes the data value 41 hex to a
keypad at address 50 hex on the
I2C bus. This feature can be very
useful to find errors in software
routines that write incorrect data
to a device.

EEPROM Data Read Trigger

In the I2C protocol, EEPROMs
have a predetermined address on
the bus in the form of 1010xxx
binary. The EEPROM Data Read
Trigger looks for an address
matching this pattern on the SDA
line, followed by a read bit and
then an acknowledge bit. When
the data matches the qualified
condition set by the user, the
MSO triggers on the acknowledge
clock edge after the data is sent.

The MSO can trigger on a “cur-
rent address read” cycle, a “ran-
dom read” cycle, or on any data
byte within a “sequential read”
cycle. The MSO trigger hardware
looks for the appropriate control
byte first, followed by any data
byte that meets the user-specified
qualifications. These qualifica-
tions include less than, greater
than equal, not equal, and
don’t care.

For example, suppose a microcon-
troller stores calibration data
from a temperature sensor in
memory to use at a later time in a
program. But when the data is
read back, it is corrupt and caus-
es the sensor to perform incor-
rectly. This trigger feature of the
MSO would give the user a quick
and easy way to track and debug
data being read from an EEPROM
in the system.

Figure 4. I2C trigger on a Write Frame with Address and Data. This powerful trigger-
ing feature allows the user to look within the 12C frame to trigger when a device at a
particular address is written to or read from with a data value.

7

Debugging an I2C Bus System with the MSO Trigger Features (continued)

I2C Bus Start and Stop Trigger

Using the I2C protocol, a start
condition must be issued before
any transaction on the bus
occurs. The start condition acts
as a signal to all connected
devices that a message is about to
be transmitted on the bus. As a
result, all connected chips will lis-
ten to the bus. After a message is
sent, a stop condition occurs.
This is the signal for all devices
on the bus that the bus is free
again. The chip accessed during
the message will then process the
received information.

It could be very difficult to find a
start or stop condition on the I2C
bus using edge triggering with a
traditional scope; there could be
hundreds of pulses to scroll
through. Using the I2C start con-

dition triggering, as shown in
Figure 5, the MSO triggers when
it detects a start condition by
looking for a high to low transi-
tion of the SDA (data) line while
the SCL (clock) line is high.

I2C Bus Re-Start Trigger

Within a single message there can
be multiple Start conditions in a
frame. The MSO with I2C trigger-
ing is able to find a restart within
a frame after the start condition
occurs.

I2C Bus Missing Acknowledge
Trigger

After each byte transfer, an
acknowledge is sent. This occurs
when the SDA line is pulled high
and the SCL line is pulsed. If a
device never sends an acknowl-

edge command, it can cause the
bus to hang up and it could be
difficult to find the actual prob-
lem. Is it the microcontroller not
sending the correct address infor-
mation or is the slave device not
responding? Setting up the MSO
to trigger on a missing acknowl-
edge can help isolate a problem
such as this very quickly. It will
find a missing acknowledge event
anywhere in an address/control
byte or data byte of any size
12C frame.

10 Bit Write Trigger

Ten-bit addressing allows the
use of up to 1024 addresses to
prevent problems with the
allocation of slave addresses as
the number of I2C devices contin-
ues to expand. The MSO triggers
on a 10-bit write to an address
in a frame if all data in the
pattern matches.

The MSO trigger features,
designed specifically for the I2C
protocol, make debugging I2C
buses easier than ever before and
allow the user to find problems in
real time whether they are prob-
lems within the protocol design
itself or problems with devices in
a system.

Figure 5. Start of Frame trigger. The MSO triggers when it detects a start condition
by looking for a high to low transition of the SDA (data) line while the SCL (clock)
line is high.

8

Serial Peripheral Interface (SPI) Introduction

The Serial Peripheral Interface,
SPI, is a serial bus standard origi-
nally introduced by Motorola with
interfaces available on many pop-
ular communication processors
and microcontrollers. Like I2C,
SPI provides good support for
communication with slow periph-
eral devices that are accessed
intermittently, such as EEPROMs
and real-time clocks. However,
SPI is better suited than I2C for
applications that are thought of
as data streams because of its
high bandwidth (in the tens of
megahertz), whereas I2C devices
read and write to addressed loca-
tions in a slave device. An exam-
ple of a data stream application is
the data communication between
microprocessors, microcon-
trollers, A/D converters, D/A
converters, or DSPs.

Devices on a SPI bus communi-
cate using a master/slave rela-
tionship, in which the master,
usually the microcontroller, initi-
ates the data transfer. When the
master generates a clock and
selects a slave device, data can be
transferred in either or both
directions at the same time
(called full-duplex mode). The
protocol helps the device to
determine if the data is a valid
signal or not, depending on bits
set in the frame.

The SPI bus consists of two data
lines and two control lines. The
data lines are MOSI (master data
output / slave data input) and
MISO (master data input / slave

data output). The control lines
include SCLK (serial clock), and
SS (slave select). The master may
transmit data at a variety of data
rates. The serial clock control line
is driven by the master and con-
trols the flow of the data bits and
cycles once for each bit transmit-
ted. The slave select control line
allows slaves to be turned on and
off with hardware control. Unlike
I2C, the SPI protocol does not
have a start of frame; the chip
select or slave select (SS) going
high or low (depending on the
device) frames the data. Figure 6
shows a block diagram of a web
phone, which is an example of a
multi-slave system.

DAA
1

DAA
2

McBSP
0

McBSP
1

McBSP
2

Dual
Channel

AIC

DSP

Data - SPI

Voice - SPI

Phone - SPI

FLASH DPRAM

EPLD
EPLD

Loader

Power
Supply

Single
Channel

AIC

HS
DET

2/4
HYB

T1

T2

R1

R2

Figure 6. Web Phone Block Diagram; example of a multi-slave SPI bus, DSP-based system.

9

Debugging an SPI Bus System with the MSO Triggering Features

Because SPI does not have a for-
mal standard, there are many dif-
ferent types of implementations.
Common debug problems in SPI
systems involve configuring the
clock rate for the controller as
well as the phase and polarity for
how each peripheral clocks data
in and out. For example, in the
web phone device shown in
Figure 7, some devices may or
may not clock data in and out
using the same polarity and
phase of the clock. Because of
this, there could be difficulties
configuring the devices on the bus.

An MSO with SPI triggering fea-
tures and deep memory is a great
tool for debugging long serial
streams, where configuration
errors may cause problems in the

system. In the previous web
phone design, MegaZoom deep
memory allows the user to corre-
late audio events, in the 20 kHz
range, with DSP digital events, in
the 10 MHz range, all in the same
acquisition. The user can connect
to the clock, data (either MISO or
MOSI) and chip select framing
(SS) signals in the target system.
As shown in Figure 7, the 2 ana-
log channels can monitor the data
and clock while the 16 digital tim-
ing channels can monitor the chip
select lines attached to the
peripheral devices.

The MSO triggers on a serial data
pattern during a framing period.
The clock slope can be set to
either a falling or rising edge. The
serial data string can be specified

to be from 4 to 32 bits long, and
the individual bit values in the
frame can be assigned to either a
L, H, or X (don’t care) condition.
Making things even easier, the CS,
Clock and Data labels for the
source channels are automatically
set up on the screen.

The user must select a framing
signal for the MSO serial trigger
hardware to detect. This framing
signal can be a high chip select
(SCS) or a low chip select (˜CS).
Also, the MSO can generate its
own framing signal after a user-
specified time of clock inactivity.
The MSO requires a setup time of
50 ns from the framing signal
going true to the first active clock
edge. The data setup and hold
times are 10 ns and 5 ns, respec-
tively. The MSO will trigger on the
Nth clock edge (from 4 to 32) if
the specified data pattern
is true.

This is a very elegant and easy-to-
use solution, especially compared
to previous methods using a logic
analyzer and an oscilloscope,
which don’t work well for debug-
ging serial bus systems. Using an
MSO, the user does not have to
create a state machine by hand to
find the desired pattern in a seri-
al stream of data, nor does the
user have to correlate measure-
ments with an oscilloscope. The
MSO does the work to find the
pattern of interest, all in a few
easy steps. Debugging an SPI bus
would traditionally have been
very difficult to perform, but the
Agilent MSO has just the right
features to save design engineers
time debugging problems in order
to spend more time designing.

Figure 7. Setting up and triggering on SPI signals. The MSO will trigger on the Nth
clock edge (from 4 to 32) if the specified data pattern is true.

10

The Controller Area Network
(CAN) is an ISO-defined serial
communications bus for real-time
applications. It was originally
introduced by Bosch in the 1980s
to provide a cost-effective com-
munications bus for automotive
electronics. The CAN serial bus
operates at data rates of up to
1 Mb/s, has excellent error detec-
tion capabilities, and is extremely
reliable. Because of these fea-
tures, the CAN serial communica-
tions bus continues to be widely
used throughout the automotive
industry and is gaining accept-
ance in manufacturing, aero-
space, and in many other indus-
trial applications involving data
communication between systems
and sub-systems.

An example CAN bus system of
an automobile is shown in
Figure 8. A typical automobile
system can have several different
CAN networks operating at differ-
ent speeds and performing differ-
ent tasks. For example, there may
be a high-speed network for the
power-train system and separate
networks for the climate control,
lights, and anti-lock brake systems.

The CAN serial bus system has
multi-master capabilities, mean-
ing that all CAN nodes can trans-
mit data, and multiple CAN nodes
can request data from the bus at
the same time.

Unlike a traditional network, CAN
does not send messages from one
point to another. In a CAN net-
work, there is no addressing of
devices in the usual sense
because it is the data, not the
device, that is given an identifier.
A priority scheme called Carrier
Sense, Multiple Access with
Collision Detect (CSMA/CD)
defines which device is the con-
troller of the bus at a particular
time. The identifier with the
lowest numerical value has the

Controller Area Network (CAN) Introduction

highest priority and will therefore
gain control of the bus. Any po-
tential bus conflicts are resolved
in hardware. A message is broad-
cast to the network and any node
that has interest in the message
can pick up the data. Additionally,
the CAN bus is a two-wire bus
with signals called CAN_HI and
CAN_LOW. With its differential
voltage design, the CAN bus has
good noise immunity and fault
tolerance characteristics.

Figure 8. Example CAN automobile system. (Diagram courtesy of Motorola Inc.)

11

Controller Area Network (CAN) Introduction (continued)

Low-cost CAN controllers, micro-
controllers with embedded CAN
controllers, and interface devices
are available as off-the-shelf parts
from many semiconductor manu-
facturers. Figure 9 shows a
typical CAN node that includes a
microcontroller with a dedicated
CAN controller using an external
address bus. Some controllers are
designed to interface either as
parallel devices on the address

bus or by using another serial bus
interface, such as SPI. The CAN
transceiver has both a transmit
and a receive side, so that it can
write to and read from the bus
simultaneously. An example of a
CAN node is shown in Figure 9.
This could be a system node for
a power window, engine monitor-
ing, or suspension control in
an automobile.

System MCU

CAN
Bus Line

_INT
_CS
ALE
_RD

_WR
_WAIT
AD7-0
RESET

PORT

SD0
SDI
SCLK
A7-0

_INT
_CS
PALE
_PRD/SRW
_PWR
_PRDY/SWAIT
AD7-0
_RESET

RX0

RX1

TX0

TX1

RXD

Vref

TXD

RS

CAN H

CAN L

Vcc GND

10 kΩ

10 kΩ
+5V

Figure 9. Example CAN node.

CAN Controller Transceiver

12

Debugging a CAN Bus System with the MSO Triggering Features

There are four different types of
communication on the CAN bus.
A message frame contains the
application data, a remote frame
requests data from the network,
an error frame reports errors to
each node, and an overload frame
delays transmission of a CAN
frame if the receiver circuitry of a
node is not ready. The MSO CAN
triggering modes provide the
ability to synchronize to any
message frame, remote transfer
request frame, or overload frame.

Since a frame of information is
usually a known place in the
operation of a CAN node, this
allows for a synchronous look at
other signals on that particular
CAN node. Shown in Figure 10 is
the MSO Quick Help description

of the CAN standard frame for-
mat. At the beginning of the
frame is the Start Of Frame (SOF)
bit. The MSO triggering capabili-
ties allow the user to synchronize
the scope acquisition to the start
of a CAN frame, permitting oscil-
loscope user to look at other
operations and signals in their
design that are time-correlated to
the CAN bus traffic. These trig-
gering features operate on either
the CAN 2.0B format with a
29-bit identifier or 2.0A with an
11-bit identifier.

One example of how these fea-
tures can be useful is to debug
automotive applications in real
time. For instance, a message that
causes the engine to start could
also cause noise from the engine

to be induced into the electronic
control system. This noise would
be synchronous to the Start of
Frame and could be difficult to
isolate. Using edge triggering to
find a problem like this would
require the user to scroll through
many pulses in a waveform and
could be very difficult to
synchronize and correlate to the
data. But with the SOF triggering
capability, this activity is
synchronous to the trigger of the
MSO. The user can probe using
the analog channels to see the
noisy components of the signal.
With MegaZoom deep memory,
the user can then look back in
time in the frame so that the
problem can easily be isolated
and analyzed to find the cause of
the noise problem.

Figure 10. CAN trigger Quick Help description. The MSO triggering capabilities
allow the user to synchronize the scope acquisition to the start of a CAN frame.

13

Debugging a CAN Bus System with the MSO Triggering Features (continued)

CAN Trigger Features

With an MSO, the user can probe
a CAN signal with any of the 2
analog or 16 digital timing chan-
nels or a combination of chan-
nels. When using only one of the
channels to synchronize to the
CAN frame, 17 other channels
remain to provide a broader
view into the design. These 17
channels, coupled with Agilent
Technologies MegaZoom deep
memory, give an unparalleled
breadth and depth of insight into
complex embedded CAN node
designs and interactions.

Specify Baud Rate

To synchronize to the bus traffic
correctly, the user can specify the
Baud Rate of the system from
10 kbps up to 1 Mbps. The baud
rates allowed follow the CiA (CAN
in Automation) trade associations
recommended baud rates.

Trigger Signals Include CAN_H,
CAN_L, Rx, or Tx

The user can also specify the
CAN-based signal to monitor. It
can be either of the differential
CAN signals, CAN_H or CAN_L.
These are useful for monitoring
the bus itself, especially when
they are the only signals the user
has access to. Using an MSO, it
can also be useful to look at para-
metric information about these
signals, including noise spikes,
ringing, and timing measure-
ments. Because these are differ-
ential signals designed for a noisy
environment, noise spikes may
cause false triggers to occur while
looking at a CAN_H or CAN_L
signal. To counter this, use a
differential probe such as the
Agilent N2772A 20 MHz differen-
tial probe, to look at the actual
noise-immune differential signal.
A signal type selection, titled
‘Differential’ in the menu system,
is available for this case.

The user can also probe the Rx
and Tx on the digital side trans-
ceiver signals. The Rx signal gives
a view of all of the traffic on the
bus and is included for ease of
access. The Rx signal should not
be susceptible to noise/level drift
on the physical bus line CAN_H
and CAN_L. The Tx line provides
more information because it
has activity on it only when the
source node is sending a message
on the bus. Probing this line can
help isolate the traffic to a
particular node.

Real-time triggering combined
with MegaZoom deep memory,
2 analog and 16 timing channels
makes the MSO a great tool for
debugging CAN systems. The
MSO’s CAN protocol trigger fea-
tures help the user to easily syn-
chronize to the data frames of
interest, making it easier to find
problems in automotive and
industrial designs. For communi-
cations within an automotive
electronic module, an SPI inter-
face is commonly used. Because
the MSO has the ability to trigger
on multiple types of serial buses,
it is an invaluable measurement
instrument for debugging CAN
system in not only automotive
applications but also in many
industrial control systems.

Figure 11. The user can specify the CAB-based signal to monitor. Shown here is a
CAN-L signal.

14

Universal Serial Bus (USB) Introduction

The Universal Serial Bus (USB)
provides a high data rate and an
easy connection from a PC to a
wide variety of multimedia and
networked USB peripheral
devices. The USB port of a PC
enables a user to add peripherals
to the system without having to
open the system chassis.
Additionally, USB allows users
to run numerous devices, such
as printers, scanners, digital
cameras, and speakers, from a
single PC.

Peripherals such as hubs and
hosts operate at full speed
(12 Mb/s) or low speed (1.5 Mb/s).
These speeds are adequate for
devices such as mice or key-
boards, but would be very
limiting and not usable for
next-generation imaging and
video devices, such as

USB High-Speed
Hub

USB Full-Speed
Hub

USB 2.0 Peripheral

480 Mb/s

48
0

M
b/

s

12 Mb/s

12
 M

b/
s

12 Mb/s

12
 M

b/
s

Figure 12. Example USB system.

high-resolution printers and
scanners, video-conferencing
cameras, and read/write (R/W)
DVD drives. For these types of
devices, high-speed USB
increases data throughput by a
factor of 40 over full speed USB
to 480 Mb/s. The USB 2.0 version
incorporates low, full, and high
speeds and is a backward com-
patible extension of USB 1.1
using the same cables, connec-
tors, and software interfaces.

USB also supports plug-and-play
capability for automatic device
detection and installation. USB
has become a standard in the PC
industry; virtually every new PC
today has one or more USB ports.
Figure 12 shows a typical USB
system with a PC connected to
many peripherals through a hub.

15

Debugging a USB System with the MSO Triggering Features

Debugging the physical layer of a
USB device is dependent on the
visibility into the system. For
instance, a USB keyboard con-
troller might consist of a micro-
controller, an EEPROM, and other
devices encapsulated into a single
package. In this case, the user
only has access to the USB inter-
face line to the keyboard and
cannot probe the internal devices
in the controller unit. If pressing
the CAPS LOCK key does not turn
on the LED on the keyboard,
there could be a number of poten-
tial sources of the problem. These
include but are not limited to a
problem in a software setup, a
device failure, or a protocol error.
To view dependencies and setup
conditions it is important for the
test equipment to isolate the USB
packets in order to find where
problems in the system may
be occurring.

The USB serial protocol has a
host-centric bus, meaning the
host initiates all transactions. An
example packet is shown in
Figure 13 in the USB QuickHelp
descriptionof the MSO. The first
packet generated by the host
describes the information to fol-
low and whether the data trans-
action will be a read or write.
The next packet is usually a data
packet carrying the payload and
is followed by a handshaking
packet reporting if the data or
token was received successfully,
or if the endpoint device is not
able to accept data.

The USB packet fields include a
Sync field, a Packet ID field, an
Address field, an Endpoint field,
a Cyclic Redundancy Check field,
and an End of Packet field. All

packets must start with a sync
field to synchronize the clock of
the receiver with that of the
transmitter. The Packet ID field is
used to identify the type of packet
that is being sent, and the
address field specifies which
device the packet is directed
towards. Cyclic Redundancy
Checks are performed on the data
within the packet payload and fol-
lowing all of these fields is the
End of Packet field.

The USB serial bus is a four-wire
system with signals including
VBUS, D-, D+ and Ground. D- and
D+ are differential signals and
are the primary carriers of the
information. The VBUS signal
supplies power to devices that
derive their primary power from
the host or hub.

Figure 13. MSO USB QuickHelp description. The Agilent MSO can trigger on both
low- and full-speed USB.

16

Debugging a USB System with Agilent MSO Triggering Features (continued)

USB Trigger Features

In the USB trigger mode, the
Agilent MSO can trigger on both
low- and full-speed USB. The user
can probe the differential lines,
D+ and D-, with any of the 2 ana-
log lines or 16 digital timing lines
using the following trigger modes:

Start of Packet (SOP),
End of Packet (EOP)

The SOF packet consists of an
11-bit frame number. The Agilent
MSO triggers at the Sync bit at
the beginning of the packet.

The End of Packet is a field with-
in a USB packet and is signaled
by a Single Ended Zero (SE0) for
a specified number of bit times.
The Agilent MSO triggers at the
end of the SE0 portion of the End
of Packet.

Enter Suspend, Exit Suspend

A USB device will enter suspend
when there is no activity on the
bus for greater than 3.0 ms. The
MSO triggers when the bus is idle
for greater than 3 ms. In the Exit
Suspend trigger mode, the MSO
triggers when exiting an idle state
for greater than 10 ms in order to
see the suspend/resume transition.

Figure 14. The Agilent MSO triggers at the sync bit at the beginning of the packet.

Reset Complete (RC)

In the Reset Complete trigger
mode the MSO will trigger when
a Single Ended Zero (SE0) is
greater than 10 ms.

There are many instances where
the USB trigger modes are useful
for debugging the physical layer
of the USB protocol. With these
trigger modes, the user is able to
synchronize to USB packets being
communicated over a USB con-
nection between a host and a USB
peripheral device, making it easi-
er to correlate relationships with-
in the protocol to find problems
in the system.

17

Summary

New technology trends bring with
them new design and debug chal-
lenges. Agilent’s Mixed-Signal
Oscilloscope (MSO) provides an
added dimension to solving prob-
lems when debugging microcon-
troller and DSP-based designs
incorporating serial buses.
Agilent has solved the problems
associated with debugging serial
bus interfaces by providing a
unique solution that uses a MSO
with specially designed triggering
capabilities to easily debug proto-
cols and the interactions of
devices on these buses. Having
one easy-to-use instrument to
debug many parts of a system can
reduce debug time, cost, and
frustration helping to get designs
out the door and into production
faster. The advantages of using an
MSO include:

• The powerful serial triggering
features allow for real time
triggering to correlate timing
relationships in microntroller
and/or DSP-based designs
using I2C, SPI, CAN, or USB
serial protocols.

• Serial protocol trigger features
are easy to use and set up;
there is no need to design a
complicated state machine in a
logic analyzer to debug serial
protocols.

• Agilent’s MSO has 2 analog
channels and 16 digital chan-
nels to make parametric, tim-
ing, and functional measure-
ments all in one instrument.

• With up to 8 Megabytes of
MegaZoom deep memory, the
MSO can easily and quickly
capture and analyze long serial
streams and correlate fast
digital signals with slow analog
signals, all in one acquisition.

• A revolutionary ultra-responsive,
high-definition display reveals
subtle waveform details that
most digitaly scopes can’t
show.

• QuickHelp instructions (in
11 languages) give details on
how to use these powerful
capabilities.

The unique 2+16-channel Mixed-
Signal Oscilloscope (MSO) models
and the traditional 2- and
4-channel oscilloscope models are
optimized with just the right
capabilities to verify and debug
microcontroller and DSP-based
designs incorporating serial
buses. This combination of capa-
bilities is tailored to give the
measurement power needed to
deliver higher quality products to
market faster.

www.agilent.com

For more information on Agilent

Technologies’ products, applications

or services, please contact your local

Agilent office. The complete list is

available at:

www.agilent.com/find/contactus

Phone or Fax

United States:
(tel) 800 829 4444
(fax) 800 829 4433

Canada:
(tel) 877 894 4414
(fax) 800 746 4866

China:
(tel) 800 810 0189
(fax) 800 820 2816

Europe:
(tel) 31 20 547 2111

Japan:
(tel) (81) 426 56 7832
(fax) (81) 426 56 7840

Korea:
(tel) (080) 769 0800
(fax) (080) 769 0900

Latin America:
(tel) (305) 269 7500

Taiwan:
(tel) 0800 047 866
(fax) 0800 286 331

Other Asia Pacific Countries:
(tel) (65) 6375 8100
(fax) (65) 6755 0042
Email: tm_ap@agilent.com
Revised: 09/14/06

Product specifications and descriptions

in this document subject to change

without notice.

© Agilent Technologies, Inc. 2007

Printed in USA, September 12, 2007

5988-5997EN

www.agilent.com/find/emailupdates

Get the latest information on the products

and applications you select.

www.agilent.com/find/quick

Quickly choose and use your test

equipment solutions with confidence.

www.agilent.com/find/open

Agilent Open simplifies the process of

connecting and programming test systems

to help engineers design, validate and

manufacture electronic products. Agilent

offers open connectivity for a broad range

of system-ready instruments, open industry

software, PC-standard I/O and global

support, which are combined to more easily

integrate test system development.

Microsoft® and Windows® are U.S.
registered trademarks of Microsoft
Corporation.

Pentium® is a U.S. registered trademark of
Intel Corporation.

Agilent Email Updates

Agilent Direct

Agilent
Open

Remove all doubt

Our repair and calibration services will get

your equipment back to you, performing

like new, when promised. You will get full

value out of your Agilent equipment

throughout its lifetime. Your equipment

will be serviced by Agilent-trained

technicians using the latest factory

calibration procedures, automated repair

diagnostics and genuine parts. You will

always have the utmost confidence in

your measurements.

Agilent offers a wide range of additional

expert test and measurement services for

your equipment, including initial start-up

assistance onsite education and training,

as well as design, system integration,

and project management.

For more information on repair and

calibration services, go to

www.agilent.com/find/removealldoubt

